Experiments with Learning Parsing Heuristics

نویسندگان

  • Sylvain Delisle
  • Sylvain Létourneau
  • Stan Matwin
چکیده

Any large language processing software relies in its operation on heuristic decisions concerning the strategy of processing. These decisions are usually "hard-wired" into the software in the form of handcrafted heuristic rules, independent of the nature of the processed texts. We propose an alternative, adaptive approach in which machine learning techniques learn the rules from examples of sentences in each class. We have experimented with a variety of learning techniques on a representative instance of this problem within the realm of parsing. Our approach lead to the discovery of new heuristics that perform significantly better than the current hand-crafted heuristic. We discuss the entire cycle of application of machine learning and suggest a methodology for the use of machine learning as a technique for the adaptive optimisation of language-processing software.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminative Learning of Beam-Search Heuristics for Planning

We consider the problem of learning heuristics for controlling forward state-space beam search in AI planning domains. We draw on a recent framework for “structured output classification” (e.g. syntactic parsing) known as learning as search optimization (LaSO). The LaSO approach uses discriminative learning to optimize heuristic functions for search-based computation of structured outputs and h...

متن کامل

Semantic Role Labeling of Chinese Using Transductive SVM and Semantic Heuristics

Semantic Role Labeling (SRL) as a Shallow Semantic Parsing causes more and more attention recently. The shortage of manually tagged data is one of main obstacles to supervised learning, which is even serious in SRL. Transductive SVM (TSVM) is a novel semi-supervised learning method special to small mount of tagged data. In this paper, we introduce an application of TSVM in Chinese SRL. To impro...

متن کامل

Combining Weak Learning Heuristics in General Problem Solvers

This paper is concerned with state space problem solvers that achieve generality by learning strong heuristics through experience in a particular domain. We specif ically consider two ways of learning by analysing past solutions that can improve future problem solving: creating macros and the chunks. A method of learning search heuristics is specified which is related to 'chunking' but which co...

متن کامل

Toward Discriminative Learning of Planning Heuristics

We consider the problem of learning heuristics for controlling forward state-space search in AI planning domain. We draw on a recent framework for “structured output classification” (e.g. syntactic parsing) known as learning as search optimization (LaSO). The LaSO approach uses discriminative learning to optimize heuristic functions for search-based computation of structured outputs and has sho...

متن کامل

Hierarchical Search for Parsing

Both coarse-to-fine and A∗ parsing use simple grammars to guide search in complex ones. We compare the two approaches in a common, agenda-based framework, demonstrating the tradeoffs and relative strengths of each method. Overall, coarse-to-fine is much faster for moderate levels of search errors, but below a certain threshold A∗ is superior. In addition, we present the first experiments on hie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998